# Advanced Subsonic Technology Noise Reduction



# Presented at Environmental Compatibility Assessment Workshop III

William L. Willshire, Jr.



Monterey, California July 7, 1998

**Advanced Subsonic Technology** 

#### **Early Advanced Configuration**



**Advanced Subsonic Technology** 

#### Recent Advanced Configuration



**Advanced Subsonic Technology** 

#### **Desperation Can Lead to Innovation**











**Advanced Subsonic Technology** 

#### PROGRESS IN NOISE REDUCTION



• Without new noise reduction technology, increasing demand coupled with increasing population will result in increased community noise impact.

#### **Advanced Subsonic Technology**

#### **BACKGROUND**

| 9/90  | FAA Research, Engineering, and Development Advisory<br>Committee formed the Aircraft Noise Abatement Working Group                                                                   |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11/91 | Aircraft Noise Abatement Working Group Report highlighted the need for a national noise reduction technology development program to meet future demands to avoid constraints         |
| 11/92 | Airport and Airway Safety, Capacity, Noise Improvement, and Intermodal Transportation Act mandated that NASA and the FAA jointly conduct a subsonic noise reduction research program |
| 11/92 | Beginning of Joint FAA/NASA Subsonic Noise Reduction Program                                                                                                                         |
| 10/93 | Beginning of NASA Advanced Subsonic Technology Noise Reduction Program                                                                                                               |

**Advanced Subsonic Technology** 

#### **PROGRAM DRIVERS**



**Advanced Subsonic Technology** 

#### **GOALS AND OBJECTIVES**

#### Goal:

**Provide Technology Readiness to Achieve-**

- Compliance with National/International Environmental Requirements
- Unrestrained <u>Capacity</u>
- Enhanced <u>Marketability</u>

#### **Objective:**

 10 dB Community Noise Impact Reduction Relative to 1992 Production Technology

#### **Advanced Subsonic Technology**

#### LEVEL I ROADMAP AND MILESTONES

| FY94 | FY95 | FY96 | FY97 | FY98 | FY99 | FY00 | FY01 | TOTAL |
|------|------|------|------|------|------|------|------|-------|
| 24.5 | 28.6 | 30.6 | 31.8 | 30.1 | 22.0 | 9.5  | 10.0 | 187.1 |



- 1. First integrated fan noise source and propagation prediction code
- 2. Adaptive and active noise control duct treatment verified on low speed fan
- 3. Concepts validated for 3 dB jet noise for 1.5-6 BPR engines and 3 dB fan noise reduction\*
- 4. Concepts validated to improve nacelle duct treatment effectiveness by 25%\*
- 6. Validated prediction and minimization methodology for community noise impact
- 7. Demonstrated 6 dB interior noise reduction\*
- 8. Validated technology to reduce aircraft noise by 10 dB\*
- 9. Large-scale component validation of noise reduction technology

\*Relative to 1992 production technology

M \$

**Advanced Subsonic Technology** 

**Engine Noise Reduction** 



Interior Noise Reduction



**Subelements** 

Airframe Noise Reduction



Nacelle Aeroacoustics



**Community Noise Impact** 



**Advanced Subsonic Technology** 

#### **AST MANAGEMENT STRUCTURE**

**AST Program Office** 

**NASA Langley** 

Noise Reduction Lead Center
NASA Langley Research Center
Bill Willshire

Industry/Government
Steering Committee

FAA

**Industry/Government** 

Technical Working Group

#### **Ames Research Center**

- Engine Noise Reduction
- Nacelle Aeroacoustics
- Airframe Noise Reduction Cliff Horne

#### **Langley Research Center**

- Engine Noise Reduction
- Nacelle Aeroacoustics Joe Posey
- Airframe Noise Reduction
- Interior Noise Reduction Rich Silcox
- Community Noise Impact Kevin Shepherd

#### **Lewis Research Center**

- Engine Noise Reduction
   Dennis Huff
- Nacelle Aeroacoustics



**Primary** 



**Support** 

#### **Advanced Subsonic Technology**

#### **INDUSTRY TEAMS/STEERING COMMITTEES**

#### **Steering Committee**

(10th meeting 3/26/98)

| AlliedSignal Weir  | Delta      | Brown    | Ex-Officio:  |
|--------------------|------------|----------|--------------|
| Allison Dalton     | Gulf. Aero | . Hilton | NASA Morello |
| ALPA Davis         | GE         | Gliebe   | FAA Erickson |
| Boeing Sea Craig   | N.O.I.S.E  | Kane     |              |
| Boeing LB Joshi    | P&W        | . Wagner |              |
| DFW Robertson/Linn |            |          |              |

## Technical Working Group (14th meeting 3/24-25/98)

| <u>Indu</u>       | <u>stry</u>      | <u>NASA</u> | <u>FAA</u> |
|-------------------|------------------|-------------|------------|
| AlliedSignal Weir | LockheedReddy    | Horne       | Skalecky   |
| Allison Dalton    | Northrop Parente | Huff        |            |
| Boeing Sea Reed   | P&W Mathews      | Posey       |            |
| Boeing LB Joshi   | Rohr Yu          | Shepherd    |            |
| Cessna Howes      | Sikorsky Jacobs  | Silcox      |            |
| GE Gliebe         | WilliamsDefever  | Stephens    |            |
|                   |                  | Willshire   |            |

**Advanced Subsonic Technology** 

#### **Subelement Success Requirements**

| Subelement                  | Objective N                                                                                         | linimum Success |
|-----------------------------|-----------------------------------------------------------------------------------------------------|-----------------|
| Engine Noise<br>Reduction   | 6 dB Engine Noise Reduction*                                                                        | 4 dB            |
| Nacelle<br>Aeroacoustics    | 50% Liner Efficiency Improvement *                                                                  | 35%             |
| Airframe Noise<br>Reduction | 4 dB Airframe Noise Reduction *                                                                     | 2 dB            |
| Interior Noise<br>Reduction | 6 dB Noise Reduction *                                                                              | 4 dB            |
| Community<br>Noise Impact   | Community Noise Impact Minimization Model (2-3 equivalent dB reduction through advanced operations) | on Same         |
| Noise Reduction<br>Program  | 10 dB Community Noise Impact<br>Reduction*                                                          | 7 dB            |

\*Relative to 1992 production technology

#### **Advanced Subsonic Technology**

#### **Interim Level I Milestones**

• 3 dB fan noise reduction



- Minimum fan tone stator design

• 3 dB jet noise reduction



- Improved mixer design tool

• 25% liner improvement



- Improved design process

#### Small Twin 80 EPNdB Takeoff Noise Contours

Contour Area, SqMi Percent Reduction, %

Baseline 7.9 Interim (1997) Goals 5.4 32
Final (2001) Goals 2.5 68



#### **Advanced Subsonic Technology**

#### **Fan Broadband Noise Test**



#### **Advanced Subsonic Technology**

#### **Active Fan Noise Control with In-duct Error Microphone**





#### **Advanced Subsonic Technology**

**Active Fan Noise Control Test Rig** 



#### **Advanced Subsonic Technology**

NR97-LTPT

#### Low Turbulence Pressure Tunnel High Lift Airframe Noise Experiment

**High-Lift Model** 



**Microphone Array Results** 

f = 16.30 kHz

f = 4.10 kHz





Flap Edge

- Full scale R<sub>C</sub> number
- Acoustic measurements in hard-walled tunnel
- Two acoustic source regions



**Trailing Edge** 

#### **Advanced Subsonic Technology**

IR97-MDOp

1.16

1.11

1.06

1.02

0.97

0.93

0.88

0.83

#### **Structural Acoustic Optimization**

Baseline

Red indicates stiffener (ring frames and longerons) locations

After Optimization



Color indicates stiffener sizing scale factor

- Cessna Citation III
- Multifrequency (190-200 Hz)
- Pressurized fuselage
- Fuselage weight held constant
- Maximum stress constrained
- Design variable bounds (.8 to 1.2)
- 6.3 dB interior broadband noise reduction

**Advanced Subsonic Technology** 

# Development of Airport Community Noise Impact Model (ACNIM)



#### **Advanced Subsonic Technology**

#### **Advanced Noise Reduction Technologies**

- Computational Advances
  - Computational aeroacoustics
  - Computational fluid dynamics
  - Direct numerical simulation
- Multidisciplinary Optimization
  - Engine fan design for acoustics and performance
  - Interior noise structural/acoustics optimization
- Active Noise Control
  - Engine noise
  - Interior noise
  - Transmission/engine vibration
- Measurement Technology
  - Microphone arrays

#### **Pratt & Whitney 4098 Static Test**



- Scarf inlet designed and fabricated
- Advanced fan/stator geometries
- Advanced jet noise suppression
- First phase of test scheduled for August 1998

#### **Advanced Subsonic Technology**

#### 40' x 80' Star Model Test



- 26% 777 semi-span model
- Advanced flap, slat, and gear airframe noise reduction concepts
- Microphone array
- Test scheduled for November 1999

#### **Advanced Subsonic Technology**

#### SUMMARY

- A broad, multi-year technology development program scheduled for completion in 2001.
- Noise reduction is enabling technology for enhanced marketability, capacity, and environmental requirements.
- Technical program is result of an extensive NASA inter-center, FAA, and industry partnership.
- Status:
  - Goals ambitious
  - Potential benefits large
  - Interim objectives reached

**Advanced Subsonic Technology** 

### **BACK-UP CHARTS**

**Advanced Subsonic Technology** 

#### **DEFINITION OF 1992 TECHNOLOGY**

- Boeing FY94/FY95 task to establish noise levels representative of 1992 production technology.
- Task broken into four classes of airplanes: small twin, medium twin, large quad, and business jet (this work subcontracted to Allied Signal in FY95).
- Established one-third octave band component noise levels for each generic airplane class based on certification data base.
- Progress toward goals assessed based on component noise prediction relative to 1992 definition.

**Advanced Subsonic Technology** 

#### 1992 TECHNOLOGY AIRCRAFT NOISE LEVELS

**FAR 36 Stage 3 Takeoff with Cutback** 



#### **Advanced Subsonic Technology**

#### Passenger Response to Interior Noise

- Aircraft Interior Acoustic Simulator developed
- Anticipated effectiveness of active noise control of propeller tones determined in Sound Quality tests

#### **Active Noise Control Sound Quality Investigation**

- 40 subjects
- 5 propeller aircraft
- 3 degrees of ANC complexity
- 3 levels of ANC effectiveness

ANC Tone Reduction Complexity & Effectiveness



#### **Aircraft Interior Acoustic Simulator**



#### **Sound Quality Test Results**

A/C 1 A/C 2 A/C 4 Change in A/C 5 passenger response, dB -10  $r^2 = 0.956$ -12 -14 -14 -12 -10 -8

Change in Sound Quality Level, dB

**Advanced Subsonic Technology** 

# Noise abatement Procedures Enabled by Advanced Flight Guidance Technology

**ILS Approach** 

**Curved Approach** 





#### **Advanced Subsonic Technology**

NR97-INM

#### **Validation of Integrated Noise Model (INM)**

#### 727 Approaches to DIA Over 24 hr Period

# 12 Viting 8 8 0 0 100 200 300 400 Distance from Touch Down, kft

#### **Predicted Versus Measured SEL**



- Variability in flight paths
- INM slightly underpredicts on average on dB basis
- Supports discussion of single event metrics to predict overall community noise impact
- Opportunity with advanced flight management technology to greatly reduce community noise impact

#### **Advanced Subsonic Technology**

#### **Lessons Learned from Program Manager's Perspective**

- Involve/partner with industry early { SC/TWG working well}
- Involve/partner with FAA early { SC/TWG working well}
- Establish program and implement as national team
- Plans should include early successes
- Perform system level studies to identify highest payoff technical areas
- Define and get into place necessary contract vehicles early
- Define quantifiable baseline
- Level III technical leaders manage across centers
- Define program assessment process
- Maintain element level reserves
- Streamline reporting/review process
- Establish technology transfer/protection policy early
- Define program metrics and roadmaps early
- Plans should include milestones which support upper level milestones
- Set up WBS to track investment per Level I milestone

**Advanced Subsonic Technology** 

#### PROGRESS IN NOISE REDUCTION



• Without new noise reduction technology, increasing demand coupled with increasing population will result in increased community noise impact.